2023 REGGIE BUSH LEAGUE ANALYTICS -- AFTER DAY 1

Day 1 Scores

In [2]:
_ = printLines(current_scores)
rank   score                         champ                runner-up
   1     130  Anna Barclay           Virginia             Kansas            
         130  Dave DeBlasio          Houston              Arizona           
   3     120  Alex Lessin            Kansas               Marquette         
         120  Andrew Koziol          Purdue               UConn             
         120  Ben Sampson            UCLA                 Baylor            
         120  Brett Stone            Marquette            Kansas            
         120  Griffin Gammill        Texas                Duke              
         120  Jamie McDonald         UCLA                 Purdue            
         120  Jennifer Andrade       Arizona              Texas             
         120  Jim Gammill            Kansas State         Gonzaga           
         120  Jonathan Graboyes      Purdue               UCLA              
         120  Matt Manderfeld        Alabama              Texas             
         120  Steve Maltzman         Houston              Alabama           
  14     110  *** Chris              Xavier               Purdue            
         110  Bibeka Shrestha        Baylor               Indiana           
         110  Casey Farrell          Kansas               Arizona           
         110  Dan Rothstein          Kentucky             Kansas            
         110  Hampton Barclay        Purdue               Texas             
         110  Luke Barclay           UCLA                 Arizona           
         110  Nathan Rothstein       Arizona              Texas             
         110  Paul Mazanec           Texas                Alabama           
         110  Sarah DeBlasio         Kansas               Arizona           
         110  Zachary Jonas          Texas                Kentucky          
  24     100  Dan Levine             Houston              Purdue            
         100  Julia Barclay          Virginia             Houston           
         100  Wyatt Posig            Gonzaga              San Diego State   
  27      90  *** DJ Toothpic        Houston              Alabama           
          90  *** Holland            Alabama              Houston           
          90  Joel Worthington       Kansas               Purdue            
          90  Kevin Broich           Purdue               UConn             
          90  Matt Saldana           Texas A&M            Tennessee         
          90  Michael Tracy          Marquette            Gonzaga           
  33      80  Grayson Holland        Houston              Arizona           
          80  Lauren Wanski          Houston              Alabama           
          80  Peter Felion           Texas                Alabama           
          80  Rob Hamilton           Arizona              Houston           
  37      60  Joe Felion             Alabama              Texas             

DESTROYED VALUE -- and how

Sometimes a first round loss is no big deal, because you picked that team to exit in the second round.

But sometimes it's a big deal, if you planned to have that pick ride all the way to the Finals.

The measure "Destroyed Value" is how many potential points you've lost -- how many more points you were hoping to get from teams that have already lost.

Princeton and Furman did their damage here

eg, the Barclay Family is dealing with 1,950 points of destroyed value

In [3]:
_ = printLines(destroyed_values)
rank   destroyed value
   1        750         Matt Saldana
   2        720         Jennifer Andrade
            720         Rob Hamilton
   4        710         Anna Barclay
   5        700         Julia Barclay
   6        670         Nathan Rothstein
   7        460         Grayson Holland
   8        410         Luke Barclay
   9        390         Dave DeBlasio
  10        370         Casey Farrell
            370         Sarah DeBlasio
  12        330         Dan Rothstein
  13        210         *** Holland
  14        200         Jamie McDonald
  15        180         Joe Felion
  16        170         *** DJ Toothpic
  17        160         Dan Levine
            160         Peter Felion
  19        150         Kevin Broich
  20        140         Lauren Wanski
  21        130         *** Chris
            130         Hampton Barclay
            130         Michael Tracy
            130         Paul Mazanec
  25        120         Wyatt Posig
  26        100         Matt Manderfeld
  27         90         Joel Worthington
  28         80         Alex Lessin
             80         Ben Sampson
             80         Griffin Gammill
             80         Jim Gammill
  32         70         Bibeka Shrestha
             70         Zachary Jonas
  34         60         Andrew Koziol
             60         Brett Stone
             60         Jonathan Graboyes
             60         Steve Maltzman

SIMULATIONS GIVE US EXPECTED VALUES

E(value) is the simulation process expected payoff for you, from first, second and third place showings. This is the expected prize winnings, before subtracting the \$25 entry fee.

Pr(1st), Pr(2nd), and Pf(3rd) are the probabilities of finishing 1, 2, and 3.

Avg-Win is the average of your scores when you win.

Best-Win is the highest of your winning scores. Those who picked more than average number of upsets have lower average and best scores.

In [8]:
_ = printLines(expected_values)
                      E(value)   Pr(1st)   Pr(2nd)   Pr(3rd) Avg-Win  Best-Win
 1    Matt Manderfeld    56.53      6.71      5.56      4.08     1159     1760
 2    Bibeka Shrestha    55.98      6.99      3.02      1.81     1039     1720
 3        Ben Sampson    55.48      6.38      7.08      3.38     1148     1750
 4        Wyatt Posig    47.52      6.05      2.13      1.39     1037     1650
 5  Jonathan Graboyes    45.34      5.26      5.04      5.00     1170     1760
 6        Brett Stone    44.73      5.55      3.66      2.09     1172     1760
 7        Jim Gammill    42.42      5.31      2.29      1.50     1030     1560
 8          *** Chris    41.68      5.30      1.68      1.33     1095     1630
 9        Alex Lessin    36.54      3.86      6.11      7.53     1176     1720
10      Andrew Koziol    36.19      4.11      4.89      3.88     1026     1760
11     Steve Maltzman    33.03      3.63      4.79      4.88     1122     1760
12       Paul Mazanec    31.81      3.86      2.97      3.54     1182     1690
13    Griffin Gammill    30.59      3.61      3.07      2.86     1045     1670
14      Michael Tracy    29.49      3.12      6.36      3.04     1089     1740
15      Casey Farrell    26.28      2.89      4.18      3.47     1116     1510
16      Dave DeBlasio    25.89      3.05      3.71      2.89     1120     1470
17     Jamie McDonald    25.88      2.83      4.19      3.39     1080     1660
18   Joel Worthington    25.00      2.90      2.94      3.49     1248     1760
19    *** DJ Toothpic    23.94      2.81      3.07      3.49     1195     1710
20       Kevin Broich    21.13      2.20      3.83      3.86     1106     1640
21         Joe Felion    19.28      1.89      4.70      3.04     1188     1690
22        *** Holland    18.92      2.08      1.94      4.28     1245     1620
23    Hampton Barclay    18.25      1.89      3.39      3.74     1207     1700
24      Zachary Jonas    15.12      1.59      3.15      2.67     1075     1650
25     Sarah DeBlasio    13.83      1.48      2.31      3.20     1114     1490
26       Matt Saldana    12.43      1.53      1.12      0.67      828     1100
27       Peter Felion    11.51      1.30      1.96      1.91     1207     1620
28         Dan Levine    10.99      1.28      1.43      1.64     1269     1590
29      Dan Rothstein     9.39      1.20      0.35      0.17     1057     1450
30      Lauren Wanski     7.47      0.64      2.35      2.76     1156     1710
31       Luke Barclay     7.43      0.66      1.59      3.36     1108     1390
32       Anna Barclay     7.34      0.86      1.14      1.30      888     1180
33    Grayson Holland     5.64      0.69      0.83      0.85     1049     1410
34   Jennifer Andrade     3.53      0.37      0.75      1.01      893     1130
35      Julia Barclay     2.72      0.26      0.59      1.02      879     1150
36       Rob Hamilton     0.43      0.04      0.14      0.24      831     1030
37   Nathan Rothstein     0.26      0.02      0.08      0.09      722     1060

AND WE HAVE HEAT MAPS !

These include only the four most likely teams to reach the Final 4 in each bracket.

Listed here by Expected Value ranking

In [9]:
heatMaps(players, teams, ttracker, xy2, 1)

As a reminder, here are the 2023 Players, by predicted Tourney champ

In [4]:
_ = printLines(top_picks)
                      CHAMP            RUNNER-UP        HANDLE
36 *** Holland        Alabama          Houston          Holland, Like the Country
 3 Joe Felion         Alabama          Texas            Cinderella
20 Matt Manderfeld    Alabama          Texas            Peck 'em Jays
33 Rob Hamilton       Arizona          Houston          Cocaine Bruin
26 Jennifer Andrade   Arizona          Texas            Derek Harper's Heart
 0 Nathan Rothstein   Arizona          Texas            Bad Bets US Trust
12 Bibeka Shrestha    Baylor           Indiana          bammashamma
21 Wyatt Posig        Gonzaga          San Diego State  y
35 *** DJ Toothpic    Houston          Alabama          dj toothpic
28 Lauren Wanski      Houston          Alabama          Tulane all the way!
 5 Steve Maltzman     Houston          Alabama          Cranky Boeheim
 2 Dave DeBlasio      Houston          Arizona          NC Double Hey
22 Grayson Holland    Houston          Arizona          The Professor
 7 Dan Levine         Houston          Purdue           Dan Levine Bracket
23 Jim Gammill        Kansas State     Gonzaga          I State My Case
 1 Casey Farrell      Kansas           Arizona          C.Farrell
25 Sarah DeBlasio     Kansas           Arizona          Sarah's Bracket 2023
19 Alex Lessin        Kansas           Marquette        Maryland Wild Ass Guess
10 Joel Worthington   Kansas           Purdue           Champion Supernova
 9 Dan Rothstein      Kentucky         Kansas           SabaAbuela
 8 Michael Tracy      Marquette        Gonzaga          Edey's Playhouse
15 Brett Stone        Marquette        Kansas           Silicon Valley BANG! BANG
14 Hampton Barclay    Purdue           Texas            2Cool4NIT
16 Jonathan Graboyes  Purdue           UCLA             Jon Graboyes
27 Andrew Koziol      Purdue           UConn            Meatball Andy AKA Tiny A
31 Kevin Broich       Purdue           UConn            Brioch Bracket
32 Matt Saldana       Texas A&M        Tennessee        Srsly V. Beautiful (SVB)
 4 Paul Mazanec       Texas            Alabama          Lombardhoopz
11 Peter Felion       Texas            Alabama          PF
 6 Griffin Gammill    Texas            Duke             gammajamma
17 Zachary Jonas      Texas            Kentucky         The Other Tim Allen
13 Luke Barclay       UCLA             Arizona          Lil Luke's Big Bracket
18 Ben Sampson        UCLA             Baylor           Run on the Bank Shot
24 Jamie McDonald     UCLA             Purdue           Yeti Life
30 Julia Barclay      Virginia         Houston          j barc
29 Anna Barclay       Virginia         Kansas           anna barc
34 *** Chris          Xavier           Purdue           CHRIS-11

footnote: if you more details on the simulation probability scheme

The simulation uses several ways to weight the likelihood that one team will win over another.

In the first and second rounds, I give strong weight to the seeds. In the third round, I make it more likely a toss-up. And for the Elite 8 forward, I give each game a 50-50 weighting -- I figure if a team has made it that far, it must be pretty good regardless of its initial seed.

Here is a bit more detail about how I am calculating the odds for each game, by round.

Round of 64: in the first round, each team's probability of winning depends on the square of seeds. For instance, an 8 playing a 9 gives the 8-seed a 55.9% chance of winning (81/(81+64)), while the 1 seed playing the 16 seed has a 99.6% chance of winning (256/257).

Round of 32: in the second round, the odds are based on the seeds (not squared). The 1-seed playing the 8-seed has a 88.9% chance of winning, while the 4-seed playing the 5 has a 55.6% chance.

Sweet 16: here I blend the ratio of seeds approach with a 50-50 odds. So a 1-seed playing a 4-seed has a 65% chance of winning (0.5 times (4/5) + 0.5 times 0.5).

Elite 8 and further: every game is rated 50-50 at this stage.

Other weighting schemes may give different results -- if you don't like your Expected Value scores, (some of you) can blame the scheme, not your picks!

Again, these results are for 500,000 simulated paths.

You will be able to find this page later at jgweb.info/RBL23/RBL23-day-1.html.

You can get back to the current page at jgweb.info.

Earlier Page

Day 0: jgweb.info/RBL23/RBL23-day-0.html.

In [ ]: